Your browser doesn't support javascript.
loading
NFE2L2 Mutations Enhance Radioresistance in Head and Neck Cancer by Modulating Intratumoral Myeloid Cells.
Guan, Li; Nambiar, Dhanya K; Cao, Hongbin; Viswanathan, Vignesh; Kwok, Shirley; Hui, Angela B; Hou, Yuan; Hildebrand, Rachel; von Eyben, Rie; Holmes, Brittany J; Zhao, Junfei; Kong, Christina S; Wamsley, Nathan; Zhang, Weiruo; Major, Michael B; Seol, Seung W; Sunwoo, John B; Hayes, D Neil; Diehn, Maximilian; Le, Quynh-Thu.
Afiliação
  • Guan L; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Nambiar DK; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Cao H; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Viswanathan V; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Kwok S; Department of Pathology, Stanford University School of Medicine, Stanford, California.
  • Hui AB; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Hou Y; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
  • Hildebrand R; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • von Eyben R; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Holmes BJ; Department of Pathology, Stanford University School of Medicine, Stanford, California.
  • Zhao J; Department of Pathology and Cell Biology, Columbia University, New York, New York.
  • Kong CS; Department of Pathology, Stanford University School of Medicine, Stanford, California.
  • Wamsley N; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri.
  • Zhang W; Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, California.
  • Major MB; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri.
  • Seol SW; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
  • Sunwoo JB; OHNS/Head and Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California.
  • Hayes DN; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
  • Diehn M; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
  • Le QT; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
Cancer Res ; 83(6): 861-874, 2023 03 15.
Article em En | MEDLINE | ID: mdl-36652552
ABSTRACT
Radiotherapy (RT) is one of the primary treatments of head and neck squamous cell carcinoma (HNSCC), which has a high-risk of locoregional failure (LRF). Presently, there is no reliable predictive biomarker of radioresistance in HNSCC. Here, we found that mutations in NFE2L2, which encodes Nrf2, are associated with a significantly higher rate of LRF in patients with oral cavity cancer treated with surgery and adjuvant (chemo)radiotherapy but not in those treated with surgery alone. Somatic mutation of NFE2L2 led to Nrf2 activation and radioresistance in HNSCC cells. Tumors harboring mutant Nrf2E79Q were substantially more radioresistant than tumors with wild-type Nrf2 in immunocompetent mice, whereas the difference was diminished in immunocompromised mice. Nrf2E79Q enhanced radioresistance through increased recruitment of intratumoral polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and reduction of M1-polarized macrophages. Treatment with the glutaminase inhibitor CB-839 overcame the radioresistance induced by Nrf2E79Q or Nrf2E79K. RT increased expression of PMN-MDSC-attracting chemokines, including CXCL1, CXLC3, and CSF3, in Nrf2E79Q-expressing tumors via the TLR4, which could be reversed by CB-839. This study provides insights into the impact of NFE2L2 mutations on radioresistance and suggests that CB-839 can increase radiosensitivity by switching intratumoral myeloid cells to an antitumor phenotype, supporting clinical testing of CB-839 with RT in HNSCC with NFE2L2 mutations.

SIGNIFICANCE:

NFE2L2 mutations are predictive biomarkers of radioresistance in head and neck cancer and confer sensitivity to glutaminase inhibitors to overcome radioresistance.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma de Células Escamosas / Células Supressoras Mieloides / Neoplasias de Cabeça e Pescoço Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma de Células Escamosas / Células Supressoras Mieloides / Neoplasias de Cabeça e Pescoço Idioma: En Ano de publicação: 2023 Tipo de documento: Article