Your browser doesn't support javascript.
loading
Direct Z-Scheme SnSe2/SnSe Heterostructure Passivated by Al2O3 for Highly Stable and Sensitive Photoelectrochemical Photodetectors.
Lu, Chunhui; Dong, Wen; Zou, Yongqiang; Wang, Zeyun; Tan, Jiayu; Bai, Xing; Ma, Nan; Ge, Yanqing; Zhao, Qiyi; Xu, Xinlong.
Afiliação
  • Lu C; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Dong W; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Zou Y; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Wang Z; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Tan J; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Bai X; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
  • Ma N; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Ge Y; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
  • Zhao Q; School of Science, Xi'an University of Posts &Telecommunications, Xi'an, 710121, China.
  • Xu X; Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China.
ACS Appl Mater Interfaces ; 15(4): 6156-6168, 2023 Feb 01.
Article em En | MEDLINE | ID: mdl-36669150
ABSTRACT
To mimic the natural photosynthesis system, a Z-scheme heterostructure is proposed as a viable and effective strategy for efficient solar energy utilization such as photocatalysis and photoelectrochemical (PEC) water splitting due to the high carrier separation efficiency, fast charge transport, strong redox, and wide light absorption. However, it remains a huge challenge to form a direct Z-scheme heterostructure due to the internal electric-field restriction and vital band-alignment at the interface. Herein, the van der Waals heterostructure based on the allotrope SnSe2 and SnSe is designed and synthesized by a two-step vapor phase deposition method to overcome the limitation in the formation of the Z-scheme heterostructure for the first time. The Z-scheme heterostructure of SnSe2/SnSe is confirmed by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, PEC measurement, density functional theory calculations, and water splitting. Strikingly, the PEC photodetectors based on the Z-scheme heterostructure show a synergistic effect of superior stability from SnSe and fast photoresponse from SnSe2. As such, the SnSe2/SnSe Z-scheme heterostructure shows a good photodetection performance in the ultraviolet to visible wavelength range. Furthermore, the photodetector shows a faster response/recovery time of 13/14 ms, a higher photosensitivity of 529.13 µA/W, and a higher detectivity of 4.94 × 109 Jones at 475 nm compared with those of single components. Furthermore, the photodetection stability of the SnSe2/SnSe is also greatly improved by a-thin-Al2O3-layer passivation. The results imply the promising rational design of a direct Z-scheme heterostructure with efficient charge transfer for high performance of optoelectronic devices.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article