Your browser doesn't support javascript.
loading
Discovery of novel Mamastroviruses in Bactrian camels and dromedaries reveals complex recombination history.
Qureshi, Muhammad I; Worthington, Brian M; Liu, Yongmei; Cheung, William Y-M; Su, Shuo; Zheng, Zuoyi; Li, Lifeng; Lam, Tommy T-Y; Guan, Yi; Zhu, Huachen.
Afiliação
  • Qureshi MI; Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong
  • Worthington BM; Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong
  • Liu Y; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Lab Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR 000, China.
  • Cheung WY; Exploration, Knowledge, Intelligence and Health, Gewuzhikang (EKIH) Pathogen Research Institute, 13/F, Building 3, 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China.
  • Su S; Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong
  • Zheng Z; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Lab Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR 000, China.
  • Li L; Exploration, Knowledge, Intelligence and Health, Gewuzhikang (EKIH) Pathogen Research Institute, 13/F, Building 3, 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China.
  • Lam TT; Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, 243 Daxue Road, Shantou, Guangdong
  • Guan Y; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Lab Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR 000, China.
  • Zhu H; Exploration, Knowledge, Intelligence and Health, Gewuzhikang (EKIH) Pathogen Research Institute, 13/F, Building 3, 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China.
Virus Evol ; 9(1): veac125, 2023.
Article em En | MEDLINE | ID: mdl-36694817
ABSTRACT
Virus emergence may occur through interspecies transmission and recombination of viruses coinfecting a host, with potential to pair novel and adaptive gene combinations. Camels are known to harbor diverse ribonucleic acid viruses with zoonotic and epizootic potential. Among them, astroviruses are of particular interest due to their cross-species transmission potential and endemicity in diverse host species, including humans. We conducted a molecular epidemiological survey of astroviruses in dromedaries from Saudi Arabia and Bactrian camels from Inner Mongolia, China. Herein, we deployed a hybrid sequencing approach coupling deep sequencing with rapid amplification of complementary deoxyribonucleic acid ends to characterize two novel Bactrian and eight dromedary camel astroviruses, including both partial and complete genomes. Our reported sequences expand the known diversity of dromedary camel astroviruses, highlighting potential recombination events among the astroviruses of camelids and other host species. In Bactrian camels, we detected partially conserved gene regions bearing resemblance to human astrovirus types 1, 4, and 8 although we were unable to recover complete reading frames from these samples. Continued surveillance of astroviruses in camelids, particularly Bactrian species and associated livestock, is highly recommended to identify patterns of cross-species transmission and to determine any epizootic threats and zoonotic risks posed to humans. Phylogenomic approaches are needed to investigate complex patterns of recombination among the astroviruses and to infer their evolutionary history across diverse host species.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article