Your browser doesn't support javascript.
loading
Drought stress delays photosynthetic induction and accelerates photoinhibition under short-term fluctuating light in tomato.
Sun, Hu; Shi, Qi; Liu, Ning-Yu; Zhang, Shi-Bao; Huang, Wei.
Afiliação
  • Sun H; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Shi Q; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Liu NY; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang SB; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. Electronic address: sbzhang@mail.kib.ac.cn.
  • Huang W; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. Electronic address: huangwei@mail.kib.ac.cn.
Plant Physiol Biochem ; 196: 152-161, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36706694
ABSTRACT
Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly delayed the induction kinetics of stomatal and mesophyll conductances after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly suppressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only caused a larger loss of carbon gain under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. To our knowledge, we here show new insight into how drought stress affects photosynthetic performance under FL.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Solanum lycopersicum Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Solanum lycopersicum Idioma: En Ano de publicação: 2023 Tipo de documento: Article