Your browser doesn't support javascript.
loading
25-hydroxycholesterol inhibits classical swine fever virus entry into porcine alveolar macrophages by depleting plasma membrane cholesterol.
Zhang, Liang; Yi, Yanyan; Wang, Tao; Song, Mengzhao; Guo, Kangkang; Zhang, Yanming.
Afiliação
  • Zhang L; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Yi Y; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Wang T; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Song M; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Guo K; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address: guokk2007@nwsuaf.edu.cn.
  • Zhang Y; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address: zhangym@nwafu.edu.cn.
Vet Microbiol ; 278: 109668, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36709687
ABSTRACT
Classical swine fever virus (CSFV) is an enveloped positive-sense RNA virus belonging to the Flaviviridae family. The virus utilizes cellular lipids and manipulates host lipid metabolism to ensure its replication, especially during virus invasion and replication steps. Therefore, identification of the molecular lipid metabolism pathways that are suitable targets is critical for the development of anti-CSFV therapeutics. In this study, we screened the anti-CSFV activity of 12 compounds targeting synthesis of cholesterol and fatty acids, cholesterol esters, and cholesterol transport. We found that 25-hydroxycholesterol (25HC), a regulator of cholesterol metabolism and transport, has potent anti-CSFV activity. Mechanistically, we showed that 25HC inhibited CSFV proliferation by blocking the entry of virions into porcine alveolar macrophages (3D4/21) by decreasing cholesterol abundance in the plasma membrane through activation of acyl-CoAcholesterol acyltransferase (ACAT). Finally, we revealed that cholesterol 25-hydroxylase (CH25H), a redox enzyme that mediates 25HC production, also restricted CSFV infection via both enzyme activity-dependent and -independent mechanisms. Collectively, our results shed light on the mechanisms by which 25HC inhibits CSFV entry into cells and suggests a potential new therapeutic method against CSFV infection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças dos Suínos / Peste Suína Clássica / Vírus da Febre Suína Clássica Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças dos Suínos / Peste Suína Clássica / Vírus da Febre Suína Clássica Idioma: En Ano de publicação: 2023 Tipo de documento: Article