Your browser doesn't support javascript.
loading
Starvation-assisted and photothermal-thriving combined chemo/chemodynamic cancer therapy with PT/MR bimodal imaging.
Zhu, Bengao; Zhang, Mengmeng; Chen, Qiang; Li, Zeke; Chen, Senbin; Zhu, Jintao.
Afiliação
  • Zhu B; State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR C
  • Zhang M; State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR C
  • Chen Q; State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR C
  • Li Z; State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR C
  • Chen S; State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR C
  • Zhu J; State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR C
Biomater Sci ; 11(6): 2129-2138, 2023 Mar 14.
Article em En | MEDLINE | ID: mdl-36723350
ABSTRACT
Chemodynamic therapy (CDT) reflects a novel reactive oxygen species (ROS)-related cancer therapeutic approach. However, CDT monotherapy is often limited by weak efficacy and insufficient endogenous H2O2. Herein, a multifunctional combined bioreactor (MnFe-LDH/MTX@GOx@Ta, MMGT) relying on MnFe-layered double hydroxide (MnFe-LDH) loaded with methotrexate (MTX) and coated with glucose oxidase (GOx)/tannin acid (Ta) is established for applications in H2O2 self-supply and photothermal enhanced chemo/chemodynamic combined therapy along with photothermal (PT) /magnetic resonance (MR) dual-modality imaging ability for cancer treatment. Once internalized into tumor cells, MMGT achieves starvation therapy by catalyzing the oxidation of glucose with GOx, accompanied by the regeneration of H2O2, enabling a Fenton-like reaction to accomplish GOx catalytic amplified CDT. Moreover, MMGT manifests significant tumor-killing ability through improved CDT performance with outstanding photothermal conversion efficiency (η = 52.2%) under 808 nm laser irradiation. In addition, the release of Mn2+ from MnFe-LDH in a solid tumor can significantly enhance T1-contrast MR imaging signals. Combined with MnFe-LDH-induced PT imaging under 808 nm laser irradiation, a dual-modality imaging directed theranostic nanoplatform has been developed. The present study provides a new strategy to design H2O2 self-supply and ROS evolving NIR light-absorption theranostic nanoagent for highly efficient and combined chemo/chemodynamic cancer treatment.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article