Your browser doesn't support javascript.
loading
High-resolution structural study on pyridin-3-yl ebselen and its N-methylated tosylate and iodide derivatives.
Xu, Ruyi; Fellowes, Thomas; White, Jonathan M.
Afiliação
  • Xu R; School of Chemistry and BIO-21 Institute, University of Melbourne, Parkville, VIC 3010, Melbourne, Australia.
  • Fellowes T; School of Chemistry and BIO-21 Institute, University of Melbourne, Parkville, VIC 3010, Melbourne, Australia.
  • White JM; School of Chemistry and BIO-21 Institute, University of Melbourne, Parkville, VIC 3010, Melbourne, Australia.
Acta Crystallogr C Struct Chem ; 79(Pt 2): 43-51, 2023 Feb 01.
Article em En | MEDLINE | ID: mdl-36739609
The crystal structure of the pyridine-substituted benzisoselenazolinone 2-(pyridin-3-yl)-2,3-dihydro-1,2-benzoselenazol-3-one (C12H8N2OSe, 2), related to the antioxidant ebselen [systematic name: 2-phenyl-1,2-benzoselenazol-3(2H)-one, 1], is characterized by strong intermolecular N...Se(-N) chalcogen bonding, where the N...Se distance of 2.3831 (6) Šis well within the sum of the van der Waals radii for N and Se (3.34 Å). This strong interaction results in significant lengthening of the internal N-Se distance, consistent with significant population of the Se-N σ* antibonding orbital. Much weaker intermolecular O...Se chalcogen bonding occurs between the amide-like O atom in 2 and the less polarized C-Se bond in this structure. Charge density analysis of 2 using multipole refinement of high-resolution data allowed the electrostatic surface potential for 2 to be mapped, and clearly reveals the σ-hole at the extension of the Se-N bond as an area of positive electrostatic potential. Topological analysis of the electron-density distribution in 2 was carried out within the Quantum Theory of Atoms in Molecules (QTAIM) framework and revealed bond paths and (3,-1) bond critical points (BCPs) for the N...Se-N moiety consistent with a closed-shell interaction; however, the potential energy term is suggestive of electron sharing. Analysis of the electron localization function (ELF) for the strong N...Se and the weak O...Se chalcogen-bonding interactions in the structure of 2 suggest significant electron sharing in the former interaction, and a largely electrostatic interaction in the latter. Conversion of 2 to its N-methylated derivatives by reaction with methyl iodide [1-methyl-3-(3-oxo-2,3-dihydro-1,2-benzoselenazol-2-yl)pyridin-1-ium iodide, C13H11N2OSe+·I-] and methyl tosylate [1-methyl-3-(3-oxo-2,3-dihydro-1,2-benzoselenazol-2-yl)pyridin-1-ium toluenesulfonate trihydrate, C13H11N2OSe+·C7H7O3S-·3H2O] removes the possibility of N...Se chalcogen bonding and instead structures are obtained where the iodide and tosylate counter-ions fulfill the role of chalcogen-bond acceptors, with a strong I-...Se interaction in the iodide salt and a weaker p-Tol-SO3-...Se interaction in the tosylate salt.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article