Your browser doesn't support javascript.
loading
Dual ligand approach increases functional group tolerance in the Pd-catalysed C-H arylation of N-heterocyclic pharmaceuticals.
Beckers, Igor; Bugaev, Aram; De Vos, Dirk.
Afiliação
  • Beckers I; Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven, Celestijnenlaan 200F Leuven 3001 Belgium dirk.devos@kuleuven.be.
  • Bugaev A; The Smart Materials Research Institute, Southern Federal University Sladkova 174/28 344090 Rostov-on-Don Russia.
  • De Vos D; Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven, Celestijnenlaan 200F Leuven 3001 Belgium dirk.devos@kuleuven.be.
Chem Sci ; 14(5): 1176-1183, 2023 Feb 01.
Article em En | MEDLINE | ID: mdl-36756333
The excellent functional group tolerance of the Suzuki-Miyaura cross-coupling reactions has been decisive for their success in the pharmaceutical industry. Highly diversified (hetero)aromatic scaffolds can be effectively coupled in the final step(s) of a convergent synthetic route. In contrast, electrophilic Pd catalysts for non-directed C-H activation are particularly sensitive to inhibition by coordinating groups in pharmaceutical precursors. While C-H arylation enables the direct conversion of (hetero)aromatics without preinstalled functional or directing groups, its functional group tolerance should be increased to be viable in late-stage cross-couplings. In this work, we report on a dual ligand approach that combines a strongly coordinating phosphine ligand with a chelating 2-hydroxypyridine for the highly robust C-H coupling of bicyclic N-heteroaromatics with aryl bromide scaffolds. The catalyst speciation was studied via in situ XAS measurements, confirming the coordination of both ligands under the reaction conditions. The C-H activation catalyst was shown to be tolerant to a wide range of pharmaceutically relevant scaffolds, including examples of late-stage functionalization of known drug molecules.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article