Your browser doesn't support javascript.
loading
An optimized bioluminescent substrate for non-invasive imaging in the brain.
Su, Yichi; Walker, Joel R; Hall, Mary P; Klein, Mark A; Wu, Xiang; Encell, Lance P; Casey, Kerriann M; Liu, Lan Xiang; Hong, Guosong; Lin, Michael Z; Kirkland, Thomas A.
Afiliação
  • Su Y; Department of Neurobiology, Stanford University, Stanford, CA, USA.
  • Walker JR; Promega Biosciences, LLC, San Luis Obispo, CA, USA.
  • Hall MP; Promega Corporation, Madison, WI, USA.
  • Klein MA; Promega Corporation, Madison, WI, USA.
  • Wu X; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Encell LP; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
  • Casey KM; Promega Corporation, Madison, WI, USA.
  • Liu LX; Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
  • Hong G; Department of Neurobiology, Stanford University, Stanford, CA, USA.
  • Lin MZ; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Kirkland TA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
Nat Chem Biol ; 19(6): 731-739, 2023 06.
Article em En | MEDLINE | ID: mdl-36759751
ABSTRACT
Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diagnóstico por Imagem / Medições Luminescentes Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diagnóstico por Imagem / Medições Luminescentes Idioma: En Ano de publicação: 2023 Tipo de documento: Article