Your browser doesn't support javascript.
loading
UV-ARTP-DES compound mutagenesis breeding improves natamycin production of Streptomyces natalensis HW-2 and reveals transcriptional changes by RNA-seq.
Sun, Jianrui; Li, Jinglan; Yao, Linlin; Zheng, Yingying; Yuan, Jiangfeng; Wang, Dahong.
Afiliação
  • Sun J; College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China.
  • Li J; College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China.
  • Yao L; College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China.
  • Zheng Y; College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China.
  • Yuan J; College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China.
  • Wang D; College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, No. 263, Kaiyuan Ave., Luoyang, 471023 Henan China.
Food Sci Biotechnol ; 32(3): 341-352, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36778090
ABSTRACT
Natamycin is widely used in food, medical and health, agriculture, and animal husbandry. In this study, Streptomyces natalensis HW-2 was used as the research object, and a mutant DES-26 with stable genetic characters was selected by UV-ARTP-DES compound mutation. The natamycin yield was 1.64 g/L, 86.36% higher than original strain. Differential expression genes were analyzed by transcriptomics, and results showed that 295 and 860 genes were significantly differentially expressed at fermentation for 48 h and 72 h. GO and KEGG analysis showed that compound mutagenesis had a significant impact on glycolysis, pentose phosphate, TCA cycle, fatty acid metabolism pathways, and several key enzyme genes in the pathways were up-regulated, and genes related to natamycin biosynthesis (pimB-pimI) and transcriptional regulator (pimR) were also up-regulated. qRT-PCR results confirmed that expression levels of these genes were consistent with transcriptional changes of RNA-Seq. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01191-z.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article