Your browser doesn't support javascript.
loading
The role of organic and inorganic substituents of roxarsone determines its binding behavior and mechanisms onto nano-ferrihydrite colloidal particles.
Lei, Ming; Huang, Yayuan; Zhou, Yimin; Mensah, Caleb Oppong; Wei, Dongning; Li, Bingyu.
Afiliação
  • Lei M; College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, C
  • Huang Y; College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, C
  • Zhou Y; College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, C
  • Mensah CO; College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, C
  • Wei D; College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, C
  • Li B; College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, C
J Environ Sci (China) ; 129: 30-44, 2023 Jul.
Article em En | MEDLINE | ID: mdl-36804240
ABSTRACT
The retention and fate of Roxarsone (ROX) onto typical reactive soil minerals were crucial for evaluating its potential environmental risk. However, the behavior and molecular-level reaction mechanism of ROX and its substituents with iron (hydr)oxides remains unclear. Herein, the binding behavior of ROX on ferrihydrite (Fh) was investigated through batch experiments and in-situ ATR-FTIR techniques. Our results demonstrated that Fh is an effective geo-sorbent for the retention of ROX. The pseudo-second-order kinetic and the Langmuir model successfully described the sorption process. The driving force for the binding of ROX on Fh was ascribed to the chemical adsorption, and the rate-limiting step is simultaneously dominated by intraparticle and film diffusion. Isotherms results revealed that the sorption of ROX onto Fh appeared in uniformly distributed monolayer adsorption sites. The two-dimensional correlation spectroscopy and XPS results implied that the nitro, hydroxyl, and arsenate moiety of ROX molecules have participated in binding ROX onto Fh, signifying that the predominated mechanisms were attributed to the hydrogen bonding and surface complexation. Our results can help to better understand the ROX-mineral interactions at the molecular level and lay the foundation for exploring the degradation, transformation, and remediation technologies of ROX and structural analog pollutants in the environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Roxarsona Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Roxarsona Idioma: En Ano de publicação: 2023 Tipo de documento: Article