Your browser doesn't support javascript.
loading
Cell-type deconvolution of bulk RNA-Seq from kidney using opensource bioinformatic tools.
Riojas, Angelica M; Spradling-Reeves, Kimberly D; Christensen, Clinton L; Hall-Ursone, Shannan; Cox, Laura A.
Afiliação
  • Riojas AM; Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
  • Spradling-Reeves KD; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
  • Christensen CL; Molecular Core, Texas Biomedical Research Institute, San Antonio, Texas, USA.
  • Hall-Ursone S; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA.
  • Cox LA; Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
bioRxiv ; 2023 Feb 14.
Article em En | MEDLINE | ID: mdl-36824792
Traditional bulk RNA-Seq pipelines do not assess cell-type composition within heterogeneous tissues. Therefore, it is difficult to determine whether conflicting findings among samples or datasets are the result of biological differences or technical differences due to variation in sample collections. This report provides a user-friendly, open source method to assess cell-type composition in bulk RNA-Seq datasets for heterogeneous tissues using published single cell (sc)RNA-Seq data as a reference. As an example, we apply the method to analysis of kidney cortex bulk RNA-Seq data from female (N=8) and male (N=9) baboons to assess whether observed transcriptome sex differences are biological or technical, i.e., variation due to ultrasound guided biopsy collections. We found cell-type composition was not statistically different in female versus male transcriptomes based on expression of 274 kidney cell-type specific transcripts, indicating differences in gene expression are not due to sampling differences. This method of cell-type composition analysis is recommended for providing rigor in analysis of bulk RNA-Seq datasets from complex tissues. It is clear that with reduced costs, more analyses will be done using scRNA-Seq; however, the approach described here is relevant for data mining and meta analyses of the thousands of bulk RNA-Seq data archived in the NCBI GEO public database.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article