Your browser doesn't support javascript.
loading
Chain Sliding versus ß-Sheet Formation upon Shearing Single α-Helical Coiled Coils.
Tsirigoni, Anna-Maria; Goktas, Melis; Atris, Zeynep; Valleriani, Angelo; Vila Verde, Ana; Blank, Kerstin G.
Afiliação
  • Tsirigoni AM; Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.
  • Goktas M; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany.
  • Atris Z; Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.
  • Valleriani A; Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.
  • Vila Verde A; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany.
  • Blank KG; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany.
Macromol Biosci ; 23(5): e2200563, 2023 05.
Article em En | MEDLINE | ID: mdl-36861255
ABSTRACT
Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger ß-sheets (αßT). Steered molecular dynamics simulations predict that this αßT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns-1 ) show the appearance of ß-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αßT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of ß-sheets competes with interchain sliding. ß-sheet formation is only possible in higher-order CC assemblies or in tensile-loading geometries where chain sliding and dissociation are prohibited.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação de Dinâmica Molecular Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação de Dinâmica Molecular Idioma: En Ano de publicação: 2023 Tipo de documento: Article