Your browser doesn't support javascript.
loading
The Relationship between Photoluminescence Emissions and Photocatalytic Activity of CeO2 Nanocrystals.
Moreno, H; Domingues, G L; Assis, M; Ortega, P P; Mastelaro, V R; Ramirez, M A; Simões, A Z.
Afiliação
  • Moreno H; School of Engineering and Science, São Paulo State University, Av. Dr. Ariberto Pereira da Cunha 333, Portal das Colinas, Guaratingueta 12516-410, São Paulo, Brazil.
  • Domingues GL; School of Engineering and Science, São Paulo State University, Av. Dr. Ariberto Pereira da Cunha 333, Portal das Colinas, Guaratingueta 12516-410, São Paulo, Brazil.
  • Assis M; Department of Analytical and Physical Chemistry, University Jaume I, Av. Vicent Sos Baynat s/n, Castellón 12071, Spain.
  • Ortega PP; School of Engineering and Science, São Paulo State University, Av. Dr. Ariberto Pereira da Cunha 333, Portal das Colinas, Guaratingueta 12516-410, São Paulo, Brazil.
  • Mastelaro VR; São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil.
  • Ramirez MA; School of Engineering and Science, São Paulo State University, Av. Dr. Ariberto Pereira da Cunha 333, Portal das Colinas, Guaratingueta 12516-410, São Paulo, Brazil.
  • Simões AZ; School of Engineering and Science, São Paulo State University, Av. Dr. Ariberto Pereira da Cunha 333, Portal das Colinas, Guaratingueta 12516-410, São Paulo, Brazil.
Inorg Chem ; 62(10): 4291-4303, 2023 Mar 13.
Article em En | MEDLINE | ID: mdl-36862825
ABSTRACT
In this work, we focus on understanding the morphology and photocatalytic properties of CeO2 nanocrystals (NCs) synthesized via a microwave-assisted solvothermal method using acetone and ethanol as solvents. Wulff constructions reveal a complete map of available morphologies and a theoretical-experimental match with octahedral nanoparticles obtained through synthesis using ethanol as solvent. NCs synthesized in acetone show a greater contribution of emission peaks in the blue region (∼450 nm), which may be associated with higher Ce3+ concentration, originating shallow-level defects within the CeO2 lattice while for the samples synthesized in ethanol a strong orange-red emission (∼595 nm) suggests that oxygen vacancies may originate from deep-level defects within the optical bandgap region. The superior photocatalytic response of CeO2 synthesized in acetone compared to that of CeO2 synthesized in ethanol may be associated with an increase in long-/short-range disorder within the CeO2 structure, causing the Egap value to decrease, facilitating light absorption. Furthermore, surface (100) stabilization in samples synthesized in ethanol may be related to low photocatalytic activity. Photocatalytic degradation was facilitated by the generation of ·OH and ·O2- radicals as corroborated by the trapping experiment. The mechanism of enhanced photocatalytic activity has been proposed suggesting that samples synthesized in acetone tend to have lower e'─h· pair recombination, which is reflected in their higher photocatalytic response.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article