Your browser doesn't support javascript.
loading
Dual-Signal Triple-Mode Optical Sensing Platform for Assisting in the Diagnosis of Kidney Disorders.
Ye, Xiwen; Gao, Dejiang; Mu, Xiaowei; Wu, Qiong; Ma, Pinyi; Song, Daqian.
Afiliação
  • Ye X; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
  • Gao D; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
  • Mu X; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
  • Wu Q; Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China.
  • Ma P; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
  • Song D; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
Anal Chem ; 95(10): 4653-4661, 2023 03 14.
Article em En | MEDLINE | ID: mdl-36863867
ABSTRACT
As known biomarkers of kidney diseases, N-acetyl-ß-d-glucosaminidase (NAG) and ß-galactosidase (ß-GAL) are of great importance for the diagnosis and treatment of diseases. The feasibility of using multiplex sensing methods to simultaneously report the outcome of the two enzymes in the same sample is even more alluring. Herein, we establish a simple sensing platform for the concurrent detection of NAG and ß-GAL using silicon nanoparticles (SiNPs) as a fluorescent indicator synthesized by a one-pot hydrothermal route. p-Nitrophenol (PNP), as a common enzymatic hydrolysis product of the two enzymes, led to the attenuation of fluorometric signal caused by the inner filter effect on SiNPs, the enhancement of colorimetric signal due to the increase of intensity of the characteristic absorption peak at around 400 nm with increasing reaction time, and the changes of RGB values of images obtained through a color recognition application on a smartphone. The fluorometric/colorimetric approach combined with the smartphone-assisted RGB mode was able to detect NAG and ß-GAL with good linear response. Applying this optical sensing platform to clinical urine samples, we found that the two indicators in healthy individuals and patients (glomerulonephritis) with kidney diseases were significantly different. By expanding to other renal lesion-related specimens, this tool may show great potentials in clinical diagnosis and visual inspection.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Nefropatias Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Nefropatias Idioma: En Ano de publicação: 2023 Tipo de documento: Article