Your browser doesn't support javascript.
loading
Enterovirus D-68 Infection of Primary Rat Cortical Neurons: Entry, Replication, and Functional Consequences.
Poelaert, Katrien C K; van Kleef, Regina G D M; Liu, Mengying; van Vliet, Arno; Lyoo, Heyrhyoung; Gerber, Lora-Sophie; Narimatsu, Yoshiki; Büll, Christian; Clausen, Henrik; de Vries, Erik; Westerink, Remco H S; van Kuppeveld, Frank J M.
Afiliação
  • Poelaert KCK; Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • van Kleef RGDM; Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • Liu M; Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • van Vliet A; Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • Lyoo H; Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • Gerber LS; Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • Narimatsu Y; Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Büll C; Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Clausen H; Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
  • de Vries E; Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • Westerink RHS; Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
  • van Kuppeveld FJM; Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
mBio ; 14(2): e0024523, 2023 04 25.
Article em En | MEDLINE | ID: mdl-36877033
ABSTRACT
Enterovirus D68 (EV-D68) is an emerging pathogen associated with mild to severe respiratory disease. Since 2014, EV-D68 is also linked to acute flaccid myelitis (AFM), causing paralysis and muscle weakness in children. However, it remains unclear whether this is due to an increased pathogenicity of contemporary EV-D68 clades or increased awareness and detection of this virus. Here, we describe an infection model of primary rat cortical neurons to study the entry, replication, and functional consequences of different EV-D68 strains, including historical and contemporary strains. We demonstrate that sialic acids are important (co)receptors for infection of both neurons and respiratory epithelial cells. Using a collection of glycoengineered isogenic HEK293 cell lines, we show that sialic acids on either N-glycans or glycosphingolipids can be used for infection. Additionally, we show that both excitatory glutamatergic and inhibitory GABA-ergic neurons are susceptible and permissive to historical and contemporary EV-D68 strains. EV-D68 infection of neurons leads to the reorganization of the Golgi-endomembranes forming replication organelles, first in the soma and later in the processes. Finally, we demonstrate that the spontaneous neuronal activity of EV-D68-infected neuronal network cultured on microelectrode arrays (MEA) is decreased, independent of the virus strain. Collectively, our findings provide novel insights into neurotropism and -pathology of different EV-D68 strains, and argue that it is unlikely that increased neurotropism is a recently acquired phenotype of a specific genetic lineage. IMPORTANCE Acute flaccid myelitis (AFM) is a serious neurological illness characterized by muscle weakness and paralysis in children. Since 2014, outbreaks of AFM have emerged worldwide, and they appear to be caused by nonpolio enteroviruses, particularly enterovirus-D68 (EV-D68), an unusual enterovirus that is known to mainly cause respiratory disease. It is unknown whether these outbreaks reflect a change of EV-D68 pathogenicity or are due to increased detection and awareness of this virus in recent years. To gain more insight herein, it is crucial to define how historical and circulating EV-D68 strains infect and replicate in neurons and how they affect their physiology. This study compares the entry and replication in neurons and the functional consequences on the neural network upon infection with an old "historical" strain and contemporary "circulating" strains of EV-D68.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Enterovirus / Enterovirus Humano D / Infecções por Enterovirus Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Enterovirus / Enterovirus Humano D / Infecções por Enterovirus Idioma: En Ano de publicação: 2023 Tipo de documento: Article