Your browser doesn't support javascript.
loading
MgFe-LDH@biochars for removing ammonia nitrogen and phosphorus from biogas slurry: Synthesis routes, composite performance, and adsorption mechanisms.
Bian, Haohao; Wang, Minyan; Han, Jialin; Hu, Xiaopiao; Xia, Honglei; Wang, Lei; Fang, Chaochu; Shen, Cheng; Man, Yu Bon; Wong, Ming Hung; Shan, Shengdao; Zhang, Jin.
Afiliação
  • Bian H; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Wang M; School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China; Jiyang College, Zhejiang A&F University, 77 Puyang Road, Zhuji, Zhejiang, 311800, China. Electronic address: mywang@zafu.edu.cn.
  • Han J; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Hu X; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Xia H; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Wang L; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Fang C; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Shen C; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Man YB; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
  • Wong MH; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China; Consortium on Health, Environment, Education and Rese
  • Shan S; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
  • Zhang J; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China. Electronic address: jinzhang@zust.edu.cn.
Chemosphere ; 324: 138333, 2023 May.
Article em En | MEDLINE | ID: mdl-36889475
ABSTRACT
Layered double hydroxide-biochar composites (LDH@BCs) have been developed for ammonia nitrogen (AN) and phosphorus (P) removal from wastewater. Improvement of LDH@BCs was limited due to the lack of comparative evaluation based on LDH@BCs characteristics and synthetic methods and information on the adsorption properties of LDH@BCs for N and P from natural wastewater. In this study, MgFe-LDH@BCs were synthesized by three different co-precipitation procedures. The differences in physicochemical and morphological properties were compared. They were then employed to remove AN and P from biogas slurry. The adsorption performance of the three MgFe-LDH@BCs was compared and evaluated. Different synthesis procedures can significantly affect the physicochemical and morphological characteristics of MgFe-LDH@BCs. The LDH@BC composite fabricated through a novel method (labeled 'MgFe-LDH@BC1') has the largest specific surface area, Mg and Fe content, and excellent magnetic response performance. Moreover, the composite has the best adsorption property of AN and P from biogas slurry (30.0% and 81.8%, respectively). The main reaction mechanisms include memory effect, ion exchange, and co-precipitation. Applying 2% MgFe-LDH@BC1 saturated with AN and P adsorption from biogas slurry as a fertilizer substitute can substantially improve soil fertility and increase plant production by 139.3%. These results indicate that the facile LDH@BC synthesis method is an effective method to overcome the shortcomings of LDH@BC in practical application, and provide a basis for further exploration of the potential application of biochar based fertilizers in agriculture.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Amônia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Amônia Idioma: En Ano de publicação: 2023 Tipo de documento: Article