Your browser doesn't support javascript.
loading
Whole-tumor radiomics analysis of T2-weighted imaging in differentiating neuroblastoma from ganglioneuroblastoma/ganglioneuroma in children: an exploratory study.
Wang, Haoru; Chen, Xin; Yu, Wenqing; Xie, Mingye; Zhang, Li; Ding, Hao; Li, Ting; Qin, Jinjie; He, Ling.
Afiliação
  • Wang H; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Chen X; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Yu W; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Xie M; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Zhang L; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Ding H; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Li T; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • Qin J; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
  • He L; Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District,
Abdom Radiol (NY) ; 48(4): 1372-1382, 2023 04.
Article em En | MEDLINE | ID: mdl-36892608
ABSTRACT

PURPOSE:

To examine the potential of whole-tumor radiomics analysis of T2-weighted imaging (T2WI) in differentiating neuroblastoma (NB) from ganglioneuroblastoma/ganglioneuroma (GNB/GN) in children. MATERIALS AND

METHODS:

This study included 102 children with peripheral neuroblastic tumors, comprising 47 NB patients and 55 GNB/GN patients, which were randomly divided into a training group (n = 72) and a test group (n = 30). Radiomics features were extracted from T2WI images, and feature dimensionality reduction was applied. Linear discriminant analysis was used to construct radiomics models, and one-standard error role combined with leave-one-out cross-validation was used to choose the optimal radiomics model with the least predictive error. Subsequently, the patient age at initial diagnosis and the selected radiomics features were incorporated to construct a combined model. The receiver operator characteristic (ROC) curve, decision curve analysis (DCA) and clinical impact curve (CIC) were applied to evaluate the diagnostic performance and clinical utility of the models.

RESULTS:

Fifteen radiomics features were eventually chosen to construct the optimal radiomics model. The area under the curve (AUC) of the radiomics model in the training group and test group was 0.940 [95% confidence interval (CI) 0.886, 0.995] and 0.799 (95%CI 0.632, 0.966), respectively. The combined model, which incorporated patient age and radiomics features, achieved an AUC of 0.963 (95%CI 0.925, 1.000) in the training group and 0.871 (95%CI 0.744, 0.997) in the test group. DCA and CIC demonstrated that the radiomics model and combined model could provide benefits at various thresholds, with the combined model being superior to the radiomics model.

CONCLUSION:

Radiomics features derived from T2WI, in combination with the age of the patient at initial diagnosis, may offer a quantitative method for distinguishing NB from GNB/GN, thus aiding in the pathological differentiation of peripheral neuroblastic tumors in children.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ganglioneuroblastoma / Ganglioneuroma / Neuroblastoma Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ganglioneuroblastoma / Ganglioneuroma / Neuroblastoma Idioma: En Ano de publicação: 2023 Tipo de documento: Article