Your browser doesn't support javascript.
loading
The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis.
Liu, Chunye; Wang, Wene; Hu, Xiaotao; Fang, Juan; Liu, Fulai.
Afiliação
  • Liu C; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China.
  • Wang W; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China.
  • Hu X; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China.
  • Fang J; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
  • Liu F; Department of Plant and Environmental Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Article em En | MEDLINE | ID: mdl-36903754
Riblet and superhydrophobic surfaces are two typical passive control technologies used to save energy. In this study, three microstructured samples-a micro-riblet surface (RS), a superhydrophobic surface (SHS), and a novel composite surface of micro-riblets with superhydrophobicity (RSHS)-were designed to improve the drag reduction rate of water flows. Aspects of the flow fields of microstructured samples, including the average velocity, turbulence intensity, and coherent structures of water flows, were investigated via particle image velocimetry (PIV) technology. A two-point spatial correlation analysis was used to explore the influence of the microstructured surfaces on coherent structures of water flows. Our results showed that the velocity on microstructured surface samples was higher than that on the smooth surface (SS) samples, and the turbulence intensity of water on the microstructured surface samples decreased compared with that on the SS samples. The coherent structures of the water flow on microstructured samples were restricted by length and structural angles. The drag reduction rates of the SHS, RS, and RSHS samples were -8.37 %, -9.67 %, and -17.39 %, respectively. The novel established RSHS demonstrated a superior drag reduction effect and could improve the drag reduction rate of water flows.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article