Your browser doesn't support javascript.
loading
Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy.
Zhang, Yuxin; Zhou, Jie; Chen, Xiaoting; Li, Zhiqian; Gu, Lei; Pan, Dayi; Zheng, Xiuli; Zhang, Qianfeng; Chen, Rongjun; Zhang, Hu; Gong, Qiyong; Gu, Zhongwei; Luo, Kui.
Afiliação
  • Zhang Y; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Zhou J; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Chen X; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Li Z; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Gu L; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Pan D; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory o
  • Zheng X; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Zhang Q; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Chen R; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
  • Zhang H; Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA.
  • Gong Q; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory o
  • Gu Z; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Luo K; Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory o
J Control Release ; 356: 525-541, 2023 04.
Article em En | MEDLINE | ID: mdl-36918084
ABSTRACT
Interaction between carcinoma-associated fibroblasts (CAFs) and tumor cells leads to the invasion and metastasis of breast cancer. Herein, we prepared a redox-responsive chondroitin sulfate (CS)-based nanomedicine, in which hydrophobic cabazitaxel (CTX) was conjugated to the backbone of CS via glutathione (GSH)-sensitive dithiomaleimide (DTM) to form an amphipathic CS-DTM-CTX (CDC) conjugate, and dasatinib (DAS) co-assembled with the CDC conjugate to obtain DAS@CDC. After CD44 receptor-mediated internalization by CAFs, the nanomedicine could reverse CAFs to normal fibroblasts, blocking their crosstalk with tumor cells and reducing synthesis of major tumor extracellular matrix proteins, including collagen and fibronectin. Meanwhile, the nanomedicine internalized by tumor cells could effectively inhibit tumor proliferation and metastasis, leading to shrinkage of the tumor volume and inhibition of lung metastasis in a subcutaneous 4T1 tumor model with low side effects. Collectively, the nanomedicine showed a remarkably synergistic therapy effect against breast cancer by modulating tumor-stromal crosstalk.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Nanomedicina Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Nanomedicina Idioma: En Ano de publicação: 2023 Tipo de documento: Article