Your browser doesn't support javascript.
loading
Design of a Four-Atom Cluster Embedded in Carbon Nitride for Electrocatalytic Generation of Multi-Carbon Products.
Zhang, Dewei; Prezhdo, Oleg V; Xu, Lai.
Afiliação
  • Zhang D; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, PR China.
  • Prezhdo OV; Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
  • Xu L; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, PR China.
J Am Chem Soc ; 145(12): 7030-7039, 2023 Mar 29.
Article em En | MEDLINE | ID: mdl-36921233
ABSTRACT
The development of efficient and stable catalysts for the electrocatalytic CO2 and CO reduction reactions (CORR) is under active investigation, but the problems of poor selectivity and low efficiency for C2 products still exist. We design a two-dimensional carbon nitride material (C5N2H2) that contains an eight N-atom structure capable of coordinating four-metal atom clusters and supporting simultaneously two carbon oxide molecules needed for the C2 coupling. The designed material has excellent electrical conductivity and stability. After high-throughput screening of catalytic performance of multiple four-metal clusters embedded into the framework, we systematically investigate the CORR process of 11 candidates. We find that Cu4-C5N2H2 has superior selectivity and low limiting potential for generating ethylene, while Cu2Zn2-C5N2H2 is selective and efficient to synthesize ethanol. Further, we discover a novel type of descriptor related to 2D material flexibility to evaluate the potential-determining step for generating ethylene. Our report both broadens the possibilities for few-atom CO reduction and demonstrates a novel substrate flexibility-related descriptor to predict the catalytic performance of materials.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article