Your browser doesn't support javascript.
loading
Evolutionary Trajectories are Contingent on Mitonuclear Interactions.
Biot-Pelletier, Damien; Bettinazzi, Stefano; Gagnon-Arsenault, Isabelle; Dubé, Alexandre K; Bédard, Camille; Nguyen, Tuc H M; Fiumera, Heather L; Breton, Sophie; Landry, Christian R.
Afiliação
  • Biot-Pelletier D; Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada.
  • Bettinazzi S; Département de biologie, Université Laval, Québec, QC, Canada.
  • Gagnon-Arsenault I; Centre de recherche en données massives (CRDM), Université Laval, Québec, QC, Canada.
  • Dubé AK; PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada.
  • Bédard C; Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada.
  • Nguyen THM; Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada.
  • Fiumera HL; Département de biologie, Université Laval, Québec, QC, Canada.
  • Breton S; Centre de recherche en données massives (CRDM), Université Laval, Québec, QC, Canada.
  • Landry CR; PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada.
Mol Biol Evol ; 40(4)2023 04 04.
Article em En | MEDLINE | ID: mdl-36929911
Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in mtDNA, current models predict that the maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genome evolving with different mitochondrial haplotypes would follow distinct molecular paths toward higher fitness. To test this prediction, we submitted 1,344 populations derived from 7 mitonuclear genotypes of Saccharomyces cerevisiae to >300 generations of experimental evolution in conditions that either select for a mitochondrial function or do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA Mitocondrial / Genoma Mitocondrial Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA Mitocondrial / Genoma Mitocondrial Idioma: En Ano de publicação: 2023 Tipo de documento: Article