Your browser doesn't support javascript.
loading
Exposure to flupyradifurone affect health of biocontrol parasitoid Binodoxys communis (Hymenoptera: Braconidae) via disrupting detoxification metabolism and lipid synthesis.
Gao, Xueke; Zhao, Likang; Zhu, Xiangzhen; Wang, Li; Zhang, Kaixin; Li, Dongyang; Ji, Jichao; Niu, Lin; Luo, Junyu; Cui, Jinjie.
Afiliação
  • Gao X; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese A
  • Zhao L; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Zhu X; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Wang L; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Zhang K; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Li D; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Ji J; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Niu L; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
  • Luo J; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese A
  • Cui J; Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese A
Ecotoxicol Environ Saf ; 255: 114785, 2023 Apr 15.
Article em En | MEDLINE | ID: mdl-36934546
ABSTRACT
Assessing the potential effects of insecticides on beneficial biological control agents is key to facilitating the success of integrated pest management (IPM) approaches. Flupyradifurone (FPF) is a novel neonicotinoid insecticide that is replacing traditional neonicotinoids over a large geographical range to control pests. Binodoxys communis, is the dominant parasitic natural enemy of aphids. To date, no reports have addressed sublethal effects of FPF on B. communis. In this study, the lethal and sublethal effects of FPF on B. communis were investigated by indirect exposure to larvae and direct exposure to adults. Results showed that the sublethal LC10 and LC25 of FPF had negative effects on the biological parameters of B. communis, including significantly reducing survival rate, adult longevity, parasitism rate, and emergence rate, and significantly prolonging the developmental stages from egg to cocoons. In addition, we observed a transgenerational effect of FPF on the next generation (F1). RNA-Seq transcriptomic analysis identified a total of 1429 differentially expressed genes (DEGs) that were significantly changed between FPF-treated and control groups. These DEGs are mainly enriched in metabolic pathways such as peroxisomes, glutamate metabolism, carbon metabolism, fatty acid metabolism, and amino acid metabolism. This report is the first comprehensive evaluation of how FPF effects B. communis, which adds to the methods of assessing pesticide exposure in parasitic natural enemies. We speculate that the significant changes in pathways, especially those related to lipid synthesis, may be the reason for weakened parasitoid biocontrol ability. The present study provides new evidence for the toxic effects and environmental residue risk of FPF.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Himenópteros / Inseticidas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Himenópteros / Inseticidas Idioma: En Ano de publicação: 2023 Tipo de documento: Article