Your browser doesn't support javascript.
loading
Molecular docking and dynamics simulation study of quinones and pyrones from Alternaria solani and Alternaria alternata with HSP90: an important therapeutic target of cancer.
H N, Karthik; Murali Sharma, Pranav; Garampalli, Rajkumar H.
Afiliação
  • H N K; Department of Studies in Botany, University of Mysore, Mysore, Karnataka, India.
  • Murali Sharma P; Department of Studies in Chemistry, University of Mysore, Mysore, Karnataka, India.
  • Garampalli RH; Department of Studies in Botany, University of Mysore, Mysore, Karnataka, India.
J Biomol Struct Dyn ; 41(24): 14744-14756, 2023.
Article em En | MEDLINE | ID: mdl-36935093
ABSTRACT
Although cancer continues to be one of the world's major causes of death, current cancer drugs have many serious side effects. There remains a need for new anticancer agents to overcome these shortcomings. Alternaria is one of the most widespread fungal genera, many species of which produce several classes of metabolites with potential polypharmacological activities. A few quinones and pyrones from Alternaria spp. have proven to exert cytotoxic effects against certain cancer cell lines, but their molecular mode of action is not known. The current study aimed to investigate the potential mechanisms that underlie the anticancer activity of a few selected quinones and pyrones from Alternaria solani and Alternaria alternata by molecular docking and dynamic simulation approaches. The selected metabolites were screened for their binding affinity to Heat shock protein 90 (HSP90), which is a known anticancer drug target. Molecular docking studies have revealed that Macrosporin, Altersolanol B, Fonsecin, and Neoaltenuene have good binding affinities with the target protein and the stabilities of the formed complexes were evaluated through molecular dynamics simulations. By analyzing the Root Mean Square Distance (RMSD), Root Mean Square Fluctuation (RMSF), and Principal Component Analysis (PCA) plots obtained from molecular dynamics simulations, this study shows that the complexes of all 4 lead molecules with target protein are stable over a 100 ns period. Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations were used to compute the binding free energies. The lead molecules were studied using in-silico analysis to determine their drug-likeness based on their Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and physicochemical properties. The results demonstrate that Macrosporin, Fonsecin, and Neoaltenuene could become promising anticancer molecules that target HSP90.Communicated by Ramaswamy H. Sarma.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias / Antineoplásicos Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias / Antineoplásicos Idioma: En Ano de publicação: 2023 Tipo de documento: Article