Your browser doesn't support javascript.
loading
AsiteDesign: a Semirational Algorithm for an Automated Enzyme Design.
Roda, Sergi; Terholsen, Henrik; Meyer, Jule Ruth Heike; Cañellas-Solé, Albert; Guallar, Victor; Bornscheuer, Uwe; Kazemi, Masoud.
Afiliação
  • Roda S; Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain.
  • Terholsen H; Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
  • Meyer JRH; Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
  • Cañellas-Solé A; Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain.
  • Guallar V; Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain.
  • Bornscheuer U; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain.
  • Kazemi M; Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
J Phys Chem B ; 127(12): 2661-2670, 2023 03 30.
Article em En | MEDLINE | ID: mdl-36944360
ABSTRACT
With advances in protein structure predictions, the number of available high-quality structures has increased dramatically. In light of these advances, structure-based enzyme engineering is expected to become increasingly important for optimizing biocatalysts for industrial processes. Here, we present AsiteDesign, a Monte Carlo-based protocol for structure-based engineering of active sites. AsiteDesign provides a framework for introducing new catalytic residues in a given binding pocket to either create a new catalytic activity or alter the existing one. AsiteDesign is implemented using pyRosetta and incorporates enhanced sampling techniques to efficiently explore the search space. The protocol was tested by designing an alternative catalytic triad in the active site of Pseudomonas fluorescens esterase (PFE). The designed variant was experimentally verified to be active, demonstrating that AsiteDesign can find alternative catalytic triads. Additionally, the AsiteDesign protocol was employed to enhance the hydrolysis of a bulky chiral substrate (1-phenyl-2-pentyl acetate) by PFE. The experimental verification of the designed variants demonstrated that F158L/F198A and F125A/F158L mutations increased the hydrolysis of 1-phenyl-2-pentyl acetate from 8.9 to 66.7 and 23.4%, respectively, and reversed the enantioselectivity of the enzyme from (R) to (S)-enantiopreference, with 32 and 55% enantiomeric excess (ee), respectively.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esterases Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esterases Idioma: En Ano de publicação: 2023 Tipo de documento: Article