Your browser doesn't support javascript.
loading
Studying the morphology, composition and function of the photoreceptor primary cilium in zebrafish.
Masek, Markus; Zang, Jingjing; Mateos, José M; Garbelli, Marco; Ziegler, Urs; Neuhauss, Stephan C F; Bachmann-Gagescu, Ruxandra.
Afiliação
  • Masek M; Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
  • Zang J; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
  • Mateos JM; Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland.
  • Garbelli M; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
  • Ziegler U; Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland.
  • Neuhauss SCF; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
  • Bachmann-Gagescu R; Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. Electronic address: ruxandra.bachmann@mls.uzh.ch.
Methods Cell Biol ; 175: 97-128, 2023.
Article em En | MEDLINE | ID: mdl-36967148
ABSTRACT
Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors. These outer segments are highly specialized primary cilia, explaining why retinal dystrophy is a key feature of ciliopathies, a group of diseases resulting from abnormal and dysfunctional cilia. Therefore, research on ciliopathies often includes the analysis of the retina with special focus on the photoreceptor and its outer segment. In the last decade, the zebrafish has emerged as an excellent model organism to study human diseases, in particular with respect to the retina. The cone-rich retina of zebrafish resembles the fovea of the human macula and thus represents an excellent model to study human retinal diseases. Here we give detailed guidance on how to analyze the morphological and ultra-structural integrity of photoreceptors in the zebrafish using various histological and imaging techniques. We further describe how to conduct functional analysis of the retina by electroretinography and how to prepare isolated outer segment fractions for different -omic approaches. These different methods allow a comprehensive analysis of photoreceptors, helping to enhance our understanding of the molecular and structural basis of ciliary function in health and of the consequences of its dysfunction in disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Ciliopatias Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Ciliopatias Idioma: En Ano de publicação: 2023 Tipo de documento: Article