Your browser doesn't support javascript.
loading
Prediction of intensive care admission and hospital mortality in COVID-19 patients using demographics and baseline laboratory data.
Avelino-Silva, Vivian I; Avelino-Silva, Thiago J; Aliberti, Marlon J R; Ferreira, Juliana C; Cobello Junior, Vilson; Silva, Katia R; Pompeu, Jose E; Antonangelo, Leila; Magri, Marcello M; Filho, Tarcisio E P Barros; Souza, Heraldo P; Kallás, Esper G.
Afiliação
  • Avelino-Silva VI; Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil. Electronic address: viviansilva87@gmail.com.
  • Avelino-Silva TJ; Laboratório de Investigação Médica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Aliberti MJR; Laboratório de Investigação Médica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Ferreira JC; Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Cobello Junior V; Núcleo Especializado em Tecnologia da Informação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Silva KR; Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Pompeu JE; Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Antonangelo L; Laboratório Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Magri MM; Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil.
  • Filho TEPB; Instituto de Ortopedia e Traumatologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Souza HP; Emergency Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
  • Kallás EG; Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil.
Clinics (Sao Paulo) ; 78: 100183, 2023.
Article em En | MEDLINE | ID: mdl-36989546
INTRODUCTION: Optimized allocation of medical resources to patients with COVID-19 has been a critical concern since the onset of the pandemic. METHODS: In this retrospective cohort study, the authors used data from a Brazilian tertiary university hospital to explore predictors of Intensive Care Unit (ICU) admission and hospital mortality in patients admitted for COVID-19. Our primary aim was to create and validate prediction scores for use in hospitals and emergency departments to aid clinical decisions and resource allocation. RESULTS: The study cohort included 3,022 participants, of whom 2,485 were admitted to the ICU; 1968 survived, and 1054 died in the hospital. From the complete cohort, 1,496 patients were randomly assigned to the derivation sample and 1,526 to the validation sample. The final scores included age, comorbidities, and baseline laboratory data. The areas under the receiver operating characteristic curves were very similar for the derivation and validation samples. Scores for ICU admission had a 75% accuracy in the validation sample, whereas scores for death had a 77% accuracy in the validation sample. The authors found that including baseline flu-like symptoms in the scores added no significant benefit to their accuracy. Furthermore, our scores were more accurate than the previously published NEWS-2 and 4C Mortality Scores. DISCUSSION AND CONCLUSIONS: The authors developed and validated prognostic scores that use readily available clinical and laboratory information to predict ICU admission and mortality in COVID-19. These scores can become valuable tools to support clinical decisions and improve the allocation of limited health resources.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: COVID-19 Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: COVID-19 Idioma: En Ano de publicação: 2023 Tipo de documento: Article