Your browser doesn't support javascript.
loading
Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer.
De Santi, Lisa Anita; Meloni, Antonella; Santarelli, Maria Filomena; Pistoia, Laura; Spasiano, Anna; Casini, Tommaso; Putti, Maria Caterina; Cuccia, Liana; Cademartiri, Filippo; Positano, Vincenzo.
Afiliação
  • De Santi LA; Department of Information Engineering, University of Pisa, 56122 Pisa, Italy.
  • Meloni A; U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy.
  • Santarelli MF; U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy.
  • Pistoia L; Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy.
  • Spasiano A; CNR Institute of Clinical Physiology, 56124 Pisa, Italy.
  • Casini T; Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy.
  • Putti MC; Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale "A. Cardarelli", 80131 Napoli, Italy.
  • Cuccia L; Centro Talassemie ed Emoglobinopatie, Ospedale "Meyer", 50139 Firenze, Italy.
  • Cademartiri F; Clinica di Emato-Oncologia Pediatrica, Dipartimento di Salute della Donna e del Bambino, Azienda Ospedale Università, 35128 Padova, Italy.
  • Positano V; Unità Operativa Complessa Ematologia con Talassemia, ARNAS Civico "Benfratelli-Di Cristina", 90127 Palermo, Italy.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article em En | MEDLINE | ID: mdl-36992032
Left Ventricle (LV) detection from Cardiac Magnetic Resonance (CMR) imaging is a fundamental step, preliminary to myocardium segmentation and characterization. This paper focuses on the application of a Visual Transformer (ViT), a novel neural network architecture, to automatically detect LV from CMR relaxometry sequences. We implemented an object detector based on the ViT model to identify LV from CMR multi-echo T2* sequences. We evaluated performances differentiated by slice location according to the American Heart Association model using 5-fold cross-validation and on an independent dataset of CMR T2*, T2, and T1 acquisitions. To the best of our knowledge, this is the first attempt to localize LV from relaxometry sequences and the first application of ViT for LV detection. We collected an Intersection over Union (IoU) index of 0.68 and a Correct Identification Rate (CIR) of blood pool centroid of 0.99, comparable with other state-of-the-art methods. IoU and CIR values were significantly lower in apical slices. No significant differences in performances were assessed on independent T2* dataset (IoU = 0.68, p = 0.405; CIR = 0.94, p = 0.066). Performances were significantly worse on the T2 and T1 independent datasets (T2: IoU = 0.62, CIR = 0.95; T1: IoU = 0.67, CIR = 0.98), but still encouraging considering the different types of acquisition. This study confirms the feasibility of the application of ViT architectures in LV detection and defines a benchmark for relaxometry imaging.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Coração / Ventrículos do Coração Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Coração / Ventrículos do Coração Idioma: En Ano de publicação: 2023 Tipo de documento: Article