Your browser doesn't support javascript.
loading
Finely Tuned Molecular Packing Realized by a New Rhodanine-Based Acceptor Enabling Excellent Additive-Free Small- and Large-Area Organic Photovoltaic Devices Approaching 19 and 12.20% Efficiencies.
Gokulnath, Thavamani; Kim, Jeonghyeon; Kim, Hyerin; Park, Jeonghyeon; Song, Donghyun; Park, Ho-Yeol; Kumaresan, Raja; Kim, Young Yong; Yoon, Jinhwan; Jin, Sung-Ho.
Afiliação
  • Gokulnath T; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Kim J; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Kim H; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Park J; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Song D; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Park HY; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Kumaresan R; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Kim YY; Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
  • Yoon J; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
  • Jin SH; Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea.
ACS Appl Mater Interfaces ; 15(15): 19307-19318, 2023 Apr 19.
Article em En | MEDLINE | ID: mdl-37016485
ABSTRACT
A new nonfullerene acceptor (NFA), BTA-ERh, was synthesized and integrated into a PM6Y7PC71BM ternary system to regulate the blend film morphology for enhanced device performance. Due to BTA-ERh's good miscibility with host active blend films, an optimized film morphology was obtained with appropriate phase separation and fine-tuning of film crystallinity, which ultimately resulted in efficient exciton dissociation, charge transport, lower recombination loss, and decreased trap-state density. The resulting additive-free quaternary devices achieved a remarkable efficiency of 18.90%, with a high voltage, fill factor, and current density of 0.87 V, 76.32%, and 28.60 mA cm-2, respectively. By adding less of a new small molecule with high crystallinity, the favorable nanomorphology shape of blend films containing NFAs might be adjusted. Consequently, this strategy can enhance photovoltaic device performance for cutting-edge NFA-based organic solar cells (OSCs). In contrast, the additive-free OSCs exhibited good operational stability. More importantly, large-area modules with the quaternary device showed a remarkable efficiency of 12.20%, with an area as high as 55 cm2 (substrate size, 100 cm2) in an air atmosphere via D-bar coating. These results highlight the enormous research potential for a multicomponent strategy for future additive-free OSC applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article