Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals.
Nat Chem
; 15(5): 705-713, 2023 May.
Article
em En
| MEDLINE
| ID: mdl-37024716
The conversion of carbon dioxide to value-added products using renewable electricity would potentially help to address current climate concerns. The electrochemical reduction of carbon dioxide to propylene, a critical feedstock, requires multiple C-C coupling steps with the transfer of 18 electrons per propylene molecule, and hence is kinetically sluggish. Here we present the electrosynthesis of propylene from carbon dioxide on copper nanocrystals with a peak geometric current density of -5.5 mA cm-2. The metallic copper nanocrystals formed from CuCl precursor present preponderant Cu(100) and Cu(111) facets, likely to favour the adsorption of key *C1 and *C2 intermediates. Strikingly, the production rate of propylene drops substantially when carbon monoxide is used as the reactant. From the electrochemical reduction of isotope-labelled carbon dioxide mixed with carbon monoxide, we infer that the key step for propylene formation is probably the coupling between adsorbed/molecular carbon dioxide or carboxyl with the *C2 intermediates that are involved in the ethylene pathway.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article