Your browser doesn't support javascript.
loading
Enhanced M2 Polarization of Oriented Macrophages on the P(VDF-TrFE) Film by Coupling with Electrical Stimulation.
Gu, Jiahao; Wu, Chengwei; He, Xuzhao; Chen, Xiaoyi; Dong, Lingqing; Weng, Wenjian; Cheng, Kui; Wang, Daming; Chen, Zuobing.
Afiliação
  • Gu J; School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
  • Wu C; School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
  • He X; School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
  • Chen X; The Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
  • Dong L; The Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
  • Weng W; School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
  • Cheng K; Center of Rehabilitation Biomedical Materials, Zhejiang University, Hangzhou 310027, China.
  • Wang D; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
  • Chen Z; School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
ACS Biomater Sci Eng ; 9(5): 2615-2624, 2023 05 08.
Article em En | MEDLINE | ID: mdl-37025039
Electrical stimulation (ES) has been considered a promising strategy in regulating intracellular communication, membrane depolarization, ion transport, etc. Meanwhile, cell topography, such as the alignment and elongation in anisotropic orientation, also plays a critical role in triggering mechanotransduction as well as the cellular fate. However, coupling of ES and cell orientation to regulate the polarization of macrophages is yet to be explored. In this work, we intended to explore the polarization of macrophages on a poly(vinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] film with intrinsic microstripe roughness, which was covered on indium tin oxide planar microelectrodes. We found that mouse bone marrow-derived macrophages (BMDMs) cultured on a P(VDF-TrFE) film exhibited an elongated morphology aligned with the microstripe crystal whisker, but their polarization behavior was not affected. However, the elongated cells were susceptible to ES and upregulated their M2 polarization, as verified by the related expression of phenotype markers, cytokines, and genes, while not affecting M1 polarization. This is due to the increased expression of the M2 polarization receptor interleukin-4Rα on the surface of elongated BMDMs, while the M1 polarization receptor toll-like receptor 4 was not affected. Thus, M2 polarization was singularly enhanced after activation of polarization by ES. The combination of surface morphology and ES to promote M2 single polarization in this work provides a new perspective for regulating macrophage polarization in the field of immunotherapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mecanotransdução Celular / Macrófagos Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mecanotransdução Celular / Macrófagos Idioma: En Ano de publicação: 2023 Tipo de documento: Article