Your browser doesn't support javascript.
loading
Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
Monteduro, Anna Grazia; Rizzato, Silvia; Caragnano, Giusi; Trapani, Adriana; Giannelli, Gianluigi; Maruccio, Giuseppe.
Afiliação
  • Monteduro AG; Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
  • Rizzato S; Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
  • Caragnano G; Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
  • Trapani A; Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
  • Giannelli G; National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy.
  • Maruccio G; Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy. Electronic address: giuseppe.maruccio@unisalento.it.
Biosens Bioelectron ; 231: 115271, 2023 Jul 01.
Article em En | MEDLINE | ID: mdl-37060819
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Dispositivos Lab-On-A-Chip Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Dispositivos Lab-On-A-Chip Idioma: En Ano de publicação: 2023 Tipo de documento: Article