Your browser doesn't support javascript.
loading
Vibrational Funnels for Energy Transfer in Organic Chromophores.
Negrin-Yuvero, Hassiel; Freixas, Victor Manuel; Ondarse-Alvarez, Dianelys; Alfonso-Hernandez, Laura; Rojas-Lorenzo, German; Bastida, Adolfo; Tretiak, Sergei; Fernandez-Alberti, Sebastian.
Afiliação
  • Negrin-Yuvero H; Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.
  • Freixas VM; Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.
  • Ondarse-Alvarez D; Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.
  • Alfonso-Hernandez L; Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.
  • Rojas-Lorenzo G; Departamento de Física Atómica y Molecular, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana 10400, Cuba.
  • Bastida A; Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain.
  • Tretiak S; Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos 87545, New Mexico, USA.
  • Fernandez-Alberti S; Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.
J Phys Chem Lett ; 14(20): 4673-4681, 2023 May 25.
Article em En | MEDLINE | ID: mdl-37167537
ABSTRACT
Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article