Your browser doesn't support javascript.
loading
Circular dichroism in hard X-ray photoelectron diffraction observed by time-of-flight momentum microscopy.
Tkach, O; Vo, T-P; Fedchenko, O; Medjanik, K; Lytvynenko, Y; Babenkov, S; Vasilyev, D; Nguyen, Q L; Peixoto, T R F; Gloskowskii, A; Schlueter, C; Chernov, S; Hoesch, M; Kutnyakhov, D; Scholz, M; Wenthaus, L; Wind, N; Marotzke, S; Winkelmann, A; Rossnagel, K; Minár, J; Elmers, H-J; Schönhense, G.
Afiliação
  • Tkach O; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany; Sumy State University, Rymskogo-Korsakova 2, 40007 Sumy, Ukraine. Electronic address: tkachole@uni-mainz.de.
  • Vo TP; New Technologies - Research Centre, Univ. of West Bohemia, 30100 Pilsen, Czech Republic.
  • Fedchenko O; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
  • Medjanik K; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
  • Lytvynenko Y; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany; Institute of Magnetism of the NAS of Ukraine and MES of Ukraine, 03142 Kyiv, Ukraine.
  • Babenkov S; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
  • Vasilyev D; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
  • Nguyen QL; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Peixoto TRF; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Gloskowskii A; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Schlueter C; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Chernov S; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Hoesch M; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Kutnyakhov D; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Scholz M; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Wenthaus L; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
  • Wind N; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany.
  • Marotzke S; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
  • Winkelmann A; Academic Centre for Materials and Nanotechn., Univ. of Science and Technology, Kraków, Poland.
  • Rossnagel K; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
  • Minár J; New Technologies - Research Centre, Univ. of West Bohemia, 30100 Pilsen, Czech Republic.
  • Elmers HJ; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
  • Schönhense G; Johannes Gutenberg-Universität, Institut für Physik, 55128 Mainz, Germany.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Article em En | MEDLINE | ID: mdl-37178606
ABSTRACT
X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article