Your browser doesn't support javascript.
loading
Oscillating Glucose Induces the Increase in Inflammatory Stress through Ninjurin-1 Up-Regulation and Stimulation of Transport Proteins in Human Endothelial Cells.
Toma, Laura; Sanda, Gabriela M; Stancu, Camelia S; Niculescu, Loredan S; Raileanu, Mina; Sima, Anca V.
Afiliação
  • Toma L; Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
  • Sanda GM; Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
  • Stancu CS; Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
  • Niculescu LS; Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
  • Raileanu M; Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
  • Sima AV; Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
Biomolecules ; 13(4)2023 03 30.
Article em En | MEDLINE | ID: mdl-37189375
Clinical data implicate fluctuations of high levels of plasma glucose in cardiovascular diseases. Endothelial cells (EC) are the first cells of the vessel wall exposed to them. Our aim was to evaluate the effects of oscillating glucose (OG) on EC function and to decipher new molecular mechanisms involved. Cultured human ECs (EA.hy926 line and primary cells) were exposed to OG (5/25 mM alternatively at 3 h), constant HG (25 mM) or physiological concentration (5 mM, NG) for 72 h. Markers of inflammation (Ninj-1, MCP-1, RAGE, TNFR1, NF-kB, and p38 MAPK), oxidative stress (ROS, VPO1, and HO-1), and transendothelial transport proteins (SR-BI, caveolin-1, and VAMP-3) were assessed. Inhibitors of ROS (NAC), NF-kB (Bay 11-7085), and Ninj-1 silencing were used to identify the mechanisms of OG-induced EC dysfunction. The results revealed that OG determined an increased expression of Ninj-1, MCP-1, RAGE, TNFR1, SR-B1, and VAMP-3 andstimulated monocyte adhesion. All of these effects were induced bymechanisms involving ROS production or NF-kB activation. NINJ-1 silencing inhibited the upregulation of caveolin-1 and VAMP-3 induced by OG in EC. In conclusion, OG induces increased inflammatory stress, ROS production, and NF-kB activation and stimulates transendothelial transport. To this end, we propose a novel mechanism linking Ninj-1 up-regulation to increased expression of transendothelial transport proteins.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Transporte / Células Endoteliais Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Transporte / Células Endoteliais Idioma: En Ano de publicação: 2023 Tipo de documento: Article