Your browser doesn't support javascript.
loading
Inositol possesses antifibrotic activity and mitigates pulmonary fibrosis.
Li, Ji-Min; Chang, Wen-Hsin; Li, Linhui; Yang, David C; Hsu, Ssu-Wei; Kenyon, Nicholas J; Chen, Ching-Hsien.
Afiliação
  • Li JM; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
  • Chang WH; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA.
  • Li L; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
  • Yang DC; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA.
  • Hsu SW; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
  • Kenyon NJ; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
  • Chen CH; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA.
Respir Res ; 24(1): 132, 2023 May 16.
Article em En | MEDLINE | ID: mdl-37194070
ABSTRACT

BACKGROUND:

Myo-inositol (or inositol) and its derivatives not only function as important metabolites for multiple cellular processes but also act as co-factors and second messengers in signaling pathways. Although inositol supplementation has been widely studied in various clinical trials, little is known about its effect on idiopathic pulmonary fibrosis (IPF). Recent studies have demonstrated that IPF lung fibroblasts display arginine dependency due to loss of argininosuccinate synthase 1 (ASS1). However, the metabolic mechanisms underlying ASS1 deficiency and its functional consequence in fibrogenic processes are yet to be elucidated.

METHODS:

Metabolites extracted from primary lung fibroblasts with different ASS1 status were subjected to untargeted metabolomics analysis. An association of ASS1 deficiency with inositol and its signaling in lung fibroblasts was assessed using molecular biology assays. The therapeutic potential of inositol supplementation in fibroblast phenotypes and lung fibrosis was evaluated in cell-based studies and a bleomycin animal model, respectively.

RESULTS:

Our metabolomics studies showed that ASS1-deficient lung fibroblasts derived from IPF patients had significantly altered inositol phosphate metabolism. We observed that decreased inositol-4-monophosphate abundance and increased inositol abundance were associated with ASS1 expression in fibroblasts. Furthermore, genetic knockdown of ASS1 expression in primary normal lung fibroblasts led to the activation of inositol-mediated signalosomes, including EGFR and PKC signaling. Treatment with inositol significantly downregulated ASS1 deficiency-mediated signaling pathways and reduced cell invasiveness in IPF lung fibroblasts. Notably, inositol supplementation also mitigated bleomycin-induced fibrotic lesions and collagen deposition in mice.

CONCLUSION:

These findings taken together demonstrate a novel function of inositol in fibrometabolism and pulmonary fibrosis. Our study provides new evidence for the antifibrotic activity of this metabolite and suggests that inositol supplementation may be a promising therapeutic strategy for IPF.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar Idiopática / Inositol Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar Idiopática / Inositol Idioma: En Ano de publicação: 2023 Tipo de documento: Article