Your browser doesn't support javascript.
loading
Assortative mixing in micro-architecturally annotated brain connectomes.
Bazinet, Vincent; Hansen, Justine Y; Vos de Wael, Reinder; Bernhardt, Boris C; van den Heuvel, Martijn P; Misic, Bratislav.
Afiliação
  • Bazinet V; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
  • Hansen JY; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
  • Vos de Wael R; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
  • Bernhardt BC; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
  • van den Heuvel MP; Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  • Misic B; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada. bratislav.misic@mcgill.ca.
Nat Commun ; 14(1): 2850, 2023 05 18.
Article em En | MEDLINE | ID: mdl-37202416
ABSTRACT
The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Conectoma Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Conectoma Idioma: En Ano de publicação: 2023 Tipo de documento: Article