Your browser doesn't support javascript.
loading
High-Order Fractal Quantum Oscillations in Graphene/BN Superlattices in the Extreme Doping Limit.
Shi, Wu; Kahn, Salman; Leconte, Nicolas; Taniguchi, Takashi; Watanabe, Kenji; Crommie, Michael; Jung, Jeil; Zettl, Alex.
Afiliação
  • Shi W; State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.
  • Kahn S; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.
  • Leconte N; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Taniguchi T; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Watanabe K; Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Crommie M; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Jung J; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Zettl A; Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett ; 130(18): 186204, 2023 May 05.
Article em En | MEDLINE | ID: mdl-37204892
Recent studies of van der Waals (vdW) heterostructures and superlattices have shown intriguing quantum phenomena, but these have been largely explored only in the moderate carrier density regime. Here, we report the probe of high-temperature fractal Brown-Zak (BZ) quantum oscillations through magnetotransport in the extreme doping regimes by applying a newly developed electron beam doping technique. This technique gives access to both ultrahigh electron and hole densities beyond the dielectric breakdown limit in graphene/BN superlattices, enabling the observation of nonmonotonic carrier-density dependence of fractal BZ states and up to fourth-order fractal BZ features despite strong electron-hole asymmetry. Theoretical tight-binding simulations qualitatively reproduce all observed fractal BZ features and attribute the nonmonotonic dependence to the weakening of superlattice effects at high carrier densities.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article