Your browser doesn't support javascript.
loading
Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH)2 nanosheets and NiMn layered hydroxides.
Hou, Zhuoran; Yu, Jie; Zhou, Xinsheng; Chen, Zhibin; Xu, Jiawei; Zhao, Boyu; Gen, Wenbao; Zhang, Huayu.
Afiliação
  • Hou Z; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Yu J; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Zhou X; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Chen Z; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Xu J; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Zhao B; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Gen W; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
  • Zhang H; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China. Electronic address: hyzhang@hit.edu.cn.
J Colloid Interface Sci ; 646: 753-762, 2023 Sep 15.
Article em En | MEDLINE | ID: mdl-37229993
A self-supporting composite electrode material with a unique three-dimensional structure was synthesized by in-situ growth of nanoscale NiMnLDH-Co(OH)2 on a nickel foam substrate via hydrothermal electrodeposition. The 3D layer of NiMnLDH-Co(OH)2 provided abundant reactive sites for electrochemical reactions, ensuring a solid and conductive skeleton for charge transfer and resulting in significant enhancement of electrochemical performance. The composite material showed a strong synergistic effect between the small nano-sheet Co(OH)2 and NiMnLDH, which promoted reaction kinetics, while the nickel foam substrate acted as a structural conductivity agent, stabilizer, and good conductive medium. The composite electrode showed impressive electrochemical performance, achieving a specific capacitance of 1870F g-1 at 1 A g-1 and retaining 87% capacitance after 3000 charge-discharge cycles, even at a high current density of 10 A g-1. Moreover, the resulting NiMnLDH-Co(OH)2//AC asymmetric supercapacitor (ASC) demonstrated remarkable specific energy of 58.2 Wh kg-1 at a specific power of 1200 W kg-1, along with outstanding cycle stability (89% capacitance retention after 5000 cycles at 10 A g-1). More importantly, DFT calculations reveal that NiMnLDH-Co(OH)2 facilitates charge transfer, accelerating surface redox reactions and increasing specific capacitance. This study presents a promising approach towards designing and developing advanced electrode materials for high-performance supercapacitors.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article