Your browser doesn't support javascript.
loading
Design and synthesis of pseudo-rutaecarpines as potent anti-inflammatory agents via regulating MAPK/NF-κB pathways to relieve inflammation-induced acute liver injury in mice.
Qin, Li-Qing; Sun, Jia-Yi; Chen, Nan-Ying; Li, Xin-Wei; Gao, De-Feng; Wang, Wang; Mo, Dong-Liang; Su, Jun-Cheng; Su, Gui-Fa; Pan, Cheng-Xue.
Afiliação
  • Qin LQ; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; Department of Chemistry and Pharmaceutic
  • Sun JY; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
  • Chen NY; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
  • Li XW; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
  • Gao DF; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
  • Wang W; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
  • Mo DL; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
  • Su JC; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China. Electronic address: su_juncheng@163.com.
  • Su GF; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China. Electronic address: gfysglgx@163.com.
  • Pan CX; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China. Electronic address: chengxuepan@163.com.
Bioorg Chem ; 138: 106611, 2023 09.
Article em En | MEDLINE | ID: mdl-37236073
ABSTRACT
Pseudo-natural products (PNPs) design strategy provides a great valuable entrance to effectively identify of novel bioactive scaffolds. In this report, novel pseudo-rutaecarpines were designed via the combination of several privileged structure units and 46 target compounds were synthesized. Most of them display moderate to potent inhibitory effect on LPS-induced NO production and low cytotoxicity in RAW264.7 macrophage. The results of the anti-inflammatory efficacy and action mechanism of compounds 7l and 8c indicated that they significantly reduced the release of IL-6, IL-1ß and TNF-α. Further studies revealed that they can strongly inhibit the activation of NF-κB and MAPK signal pathways. The LPS-induced acute liver injury mice model studies not only confirmed their anti-inflammatory efficacy in vivo but also could effectively relieve the liver injury in mice. The results suggest that compounds 7l and 8c might serve as lead compounds to develop therapeutic drugs for treatment of inflammation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lipopolissacarídeos / NF-kappa B Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lipopolissacarídeos / NF-kappa B Idioma: En Ano de publicação: 2023 Tipo de documento: Article