Your browser doesn't support javascript.
loading
Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment.
Li, Luolin; Yu, Zheng; Liu, Jianfeng; Yang, Manyi; Shi, Gongpu; Feng, Ziqi; Luo, Wei; Ma, Huiru; Guan, Jianguo; Mou, Fangzhi.
Afiliação
  • Li L; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Yu Z; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Liu J; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Yang M; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Shi G; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Feng Z; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Luo W; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China. rowell@whut.edu.cn.
  • Ma H; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Guan J; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
  • Mou F; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
Nanomicro Lett ; 15(1): 141, 2023 May 29.
Article em En | MEDLINE | ID: mdl-37247162
ABSTRACT
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article