Your browser doesn't support javascript.
loading
Ultrasound-controlled nano oxygen carriers enhancing cell viability in 3D GelMA hydrogel for the treatment of myocardial infarction.
Wang, Hao; Guo, Yuxin; Hu, Yugang; Zhou, Yanxiang; Chen, Yueying; Huang, Xin; Chen, Jinling; Deng, Qing; Cao, Sheng; Hu, Bo; Jiang, Riyue; Pan, Juhong; Tan, Tuantuan; Wang, Yijia; Chen, Yun; Dong, Qi; Chen, Pu; Zhou, Qing.
Afiliação
  • Wang H; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Guo Y; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Hu Y; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Zhou Y; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Chen Y; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Huang X; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Chen J; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Deng Q; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Cao S; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Hu B; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Jiang R; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Pan J; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Tan T; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Wang Y; Renmin Hospital of Wuhan University, 430060 Wuhan, China.
  • Chen Y; Wuhan University School of Basic Medical Science, 430060 Wuhan, China.
  • Dong Q; Wuhan University School of Basic Medical Science, 430060 Wuhan, China.
  • Chen P; Wuhan University School of Basic Medical Science, 430060 Wuhan, China.
  • Zhou Q; Renmin Hospital of Wuhan University, 430060 Wuhan, China. Electronic address: qingzhou@whu.edu.cn.
Int J Biol Macromol ; 244: 125139, 2023 Jul 31.
Article em En | MEDLINE | ID: mdl-37268076
Heart failure is a critical and ultimate phase of cardiovascular ailment that leads to a considerable incidence of disability and mortality. Among various factors contributing to heart failure, myocardial infarction is one of the most frequent and significant causes, which is still difficult to manage effectively. An innovative therapeutic strategy, namely a 3D bio-printed cardiac patch, has recently emerged as a promising approach to substitute damaged cardiomyocytes in a localized infarct region. Nevertheless, the efficacy of this treatment primarily relies on the long-term viability of the transplanted cells. In this study, we aimed to construct acoustically sensitive nano oxygen carriers to improve cell survival inside the bio-3D printed patch. In this study, we initially created nanodroplets capable of phase transition triggered by ultrasound and integrated them into GelMA (Gelatin Methacryloyl) hydrogels, which were then employed for 3D bioprinting. After adding nanodroplets and ultrasonic irradiation, numerous pores appeared inside the hydrogel with improved permeability. We further encapsulated hemoglobin into nanodroplets (ND-Hb) to construct oxygen carriers. Results of in vitro experiments showed the highest cell survival within the patch of ND-Hb irradiated by the low-intensity pulsed ultrasound (LIPUS) group. The genomic analysis discovered that the increased survival of seeded cells within the patch might be related to the protection of mitochondrial function owing to the improved hypoxic state. Eventually, in vivo studies revealed that the LIPUS+ND-Hb group had improved cardiac function and increased revascularization after myocardial infarction. To summarize, our study successfully improved the permeability of the hydrogel in a non-invasive and efficient manner, facilitating the exchange of substances in the cardiac patch. Moreover, ultrasound-controlled oxygen release augmented the viability of the transplanted cells and expedited the repair of infarcted tissues.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Insuficiência Cardíaca / Infarto do Miocárdio Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Insuficiência Cardíaca / Infarto do Miocárdio Idioma: En Ano de publicação: 2023 Tipo de documento: Article