Event-related variability is modulated by task and development.
Neuroimage
; 276: 120208, 2023 08 01.
Article
em En
| MEDLINE
| ID: mdl-37268095
In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials (ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which in infants, was modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in human infants.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Eletroencefalografia
/
Potenciais Evocados
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article