Your browser doesn't support javascript.
loading
Design of IKVAV peptide/gold nanoparticle decorated, micro/nano-channeled PCL/PLGA film scaffolds for neuronal differentiation and neurite outgrowth.
Aydeger, Asel; Aysit, Nese; Baydas, Gulsena; Cakici, Cagri; Erim, Umit Can; Arpa, Muhammet Davut; Ozcicek, Ilyas.
Afiliação
  • Aydeger A; Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
  • Aysit N; Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
  • Baydas G; Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
  • Cakici C; Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
  • Erim UC; Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey.
  • Arpa MD; Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey.
  • Ozcicek I; Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey. Electronic address: iozcicek@medipol.edu.tr.
Biomater Adv ; 152: 213472, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37301056
ABSTRACT
In the field of neural tissue engineering, intensive efforts are being made to develop tissue scaffolds that can support an effective functional recovery and neural development by guiding damaged axons and neurites. Micro/nano-channeled conductive biomaterials are considered a promising approach for repairing the injured neural tissues. Many studies have demonstrated that the micro/nano-channels and aligned nanofibers could guide the neurites to extend along the direction of alignment. However, an ideal biocompatible scaffold containing conductive arrays that could promote effective neural stem cell differentiation and development, and also stimulate high neurite guidance has not been fully developed. In the current study, we aimed to fabricate micro/nano-channeled polycaprolactone (PCL)/Poly-d,l-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, decorate their surfaces with IKVAV pentapeptide/gold nanoparticles (AuNPs), and investigate the behavior of PC12 cells and neural stem cells (NSCs) on the developed biomaterial under static/bioreactor conditions. Here we show that channeled groups decorated with AuNPs highly promote neurite outgrowth and neuronal differentiation along linear lines in the presence of electrical stimulation, compared with the polypyrrole (PPy) coating, which has been used traditionally for many years. Hopefully, this newly developed channeled scaffold structure (PCL/PLGA-AuNPs-IKVAV) could help to support long-distance axonal regeneration and neuronal development after different neural damages.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Idioma: En Ano de publicação: 2023 Tipo de documento: Article