Theoretical exploration and experimental regulation of the degradation of Δ9-tetrahydrocannabinol in hemp seed oil by density functional theory.
Food Res Int
; 170: 112996, 2023 08.
Article
em En
| MEDLINE
| ID: mdl-37316068
Δ9-tetrahydrocannabinol (Δ9-THC) in hemp seed oil is a psychoactive cannabinoid, and the content of Δ9-THC can be reduced. Density functional theory (DFT) was used to simulate the degradation path of Δ9-THC, and the ultrasonic treatment was used to degrade the Δ9-THC in hemp seed oil. Results found that the reaction of Δ9-THC degradation to cannabinol (CBN) was a spontaneous exothermic reaction, which required a certain amount of external energy to initiate reaction process. Through the surface electrostatic potential analysis, the minimum value of electrostatic potential of Δ9-THC was -37.68 kcal/mol, and the maximum value was 40.98 kcal/mol. The frontier molecular orbitals analysis found that the energy level difference of Δ9-THC was lower than that of CBN, indicating that the reactivity of Δ9-THC was stronger. The degradation process of Δ9-THC could be divided into two stages, which needed to cross the reaction energy barriers of 3197.40 and 3087.24 kJ/mol, respectively. Ultrasonic treatment was used to degrade Δ9-THC standard solution, it was found that Δ9-THC can be effectively degraded into CBN through intermediate. Subsequently, ultrasonic technology was applied to hemp seed oil, under the conditions of ultrasonic power 150 W and ultrasonic time 21 min, the Δ9-THC was degraded to 10.00 mg/kg.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Dronabinol
/
Canabinol
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article