Your browser doesn't support javascript.
loading
Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
Lee, Seungjoon; Psarellis, Yorgos M; Siettos, Constantinos I; Kevrekidis, Ioannis G.
Afiliação
  • Lee S; Department of Applied Data Science, San José State University, San Jose, USA.
  • Psarellis YM; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA.
  • Siettos CI; Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" and Scuola Superiore Meridionale, Universitá degli Studi di Napoli Federico II, Naples, Italy.
  • Kevrekidis IG; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA. yannisk@jhu.edu.
J Math Biol ; 87(1): 15, 2023 06 21.
Article em En | MEDLINE | ID: mdl-37341784
We propose a machine learning framework for the data-driven discovery of macroscopic chemotactic Partial Differential Equations (PDEs)-and the closures that lead to them- from high-fidelity, individual-based stochastic simulations of Escherichia coli bacterial motility. The fine scale, chemomechanical, hybrid (continuum-Monte Carlo) simulation model embodies the underlying biophysics, and its parameters are informed from experimental observations of individual cells. Using a parsimonious set of collective observables, we learn effective, coarse-grained "Keller-Segel class" chemotactic PDEs using machine learning regressors: (a) (shallow) feedforward neural networks and (b) Gaussian Processes. The learned laws can be black-box (when no prior knowledge about the PDE law structure is assumed) or gray-box when parts of the equation (e.g. the pure diffusion part) is known and "hardwired" in the regression process. More importantly, we discuss data-driven corrections (both additive and functional), to analytically known, approximate closures.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Escherichia coli Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Escherichia coli Idioma: En Ano de publicação: 2023 Tipo de documento: Article