Your browser doesn't support javascript.
loading
Interactions between proteins and cellulose in a liquid crystalline media: Design of a droplet based experimental platform.
Voisin, Hugo; Bonnin, Estelle; Marquis, Mélanie; Alvarado, Camille; Lafon, Suzanne; Lopez-Leon, Teresa; Jamme, Frederic; Capron, Isabelle.
Afiliação
  • Voisin H; INRAE, UR 1268 BIA, 44316 Nantes, France. Electronic address: hugo.voisin@inrae.fr.
  • Bonnin E; INRAE, UR 1268 BIA, 44316 Nantes, France.
  • Marquis M; INRAE, UMR 703 PAnTher, 44307 Nantes, France.
  • Alvarado C; INRAE, UR 1268 BIA, 44316 Nantes, France.
  • Lafon S; Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France.
  • Lopez-Leon T; Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France.
  • Jamme F; DISCO Beamline, SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France.
  • Capron I; INRAE, UR 1268 BIA, 44316 Nantes, France.
Int J Biol Macromol ; 245: 125488, 2023 Aug 01.
Article em En | MEDLINE | ID: mdl-37353113
ABSTRACT
Model systems are needed to provide controlled environment for the understanding of complex phenomena. Interaction between polysaccharides and proteins in dense medium are involved in numerous complex systems such as biomass conversion or plant use for food processing or biobased materials. In this work, cellulose nanocrystals (CNCs) were used to study proteins in a dense and organized cellulosic environment. This environment was designed within microdroplets using a microfluidic setup, and applied to two proteins, bovine serum albumin (BSA) and a GH7 endoglucanase, relevant to food and plant science, respectively. The CNC at 56.5 g/L organized in liquid crystalline structure and the distribution of the proteins was probed using synchrotron deep-UV radiation. The proteins were homogeneously distributed throughout the volume, but BSA significantly disturbed the droplet global organization, preferring partition in hydrophilic external micelles. In contrast, GH7 partitioned with the CNCs showing stronger non-polar interaction but without disruption of the system organization. Such results pave the road for the development of more complex polysaccharides - proteins in-vitro models.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Celulose / Nanopartículas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Celulose / Nanopartículas Idioma: En Ano de publicação: 2023 Tipo de documento: Article