Your browser doesn't support javascript.
loading
Characterization of the LysP2110-HolP2110 Lysis System in Ralstonia solanacearum Phage P2110.
Chen, Kaihong; Guan, Yanhui; Hu, Ronghua; Cui, Xiaodong; Liu, Qiongguang.
Afiliação
  • Chen K; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
  • Guan Y; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
  • Hu R; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
  • Cui X; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
  • Liu Q; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article em En | MEDLINE | ID: mdl-37373522
ABSTRACT
Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacteriófagos / Ralstonia solanacearum / Anti-Infecciosos Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacteriófagos / Ralstonia solanacearum / Anti-Infecciosos Idioma: En Ano de publicação: 2023 Tipo de documento: Article