Your browser doesn't support javascript.
loading
Acute myeloid leukemia cells and MSC-derived exosomes inhibiting transformation in myelodysplastic syndrome.
Liu, Xiaoli; Ren, Fanggang; Li, Shuo; Zhang, Na; Pu, Jeffrey J; Zhang, Hongyu; Xu, Zhifang; Tan, Yanhong; Chen, Xiuhua; Chang, Jianmei; Wang, Hongwei.
Afiliação
  • Liu X; Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China.
  • Ren F; Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China. Burton@sxmu.edu.cn.
  • Li S; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China. Burton@sxmu.edu.cn.
  • Zhang N; Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China.
  • Pu JJ; Department of Medical Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, China.
  • Zhang H; Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA.
  • Xu Z; Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China.
  • Tan Y; Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China.
  • Chen X; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China.
  • Chang J; Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China.
  • Wang H; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China.
Discov Oncol ; 14(1): 115, 2023 Jun 29.
Article em En | MEDLINE | ID: mdl-37382733
ABSTRACT

AIMS:

To investigate the mechanism of exosomes' role in the transformation of MDS to AML.

METHODS:

Exosomes in culture supernatants of MDS and AML cell lines, were extracted by ultrafiltration and identified in three ways morphology, size, and exosome protein surface markers. Exosomes from AML cell lines were then co-cultured with MDS cell lines and their impacts on MDS cell microenvironment, proliferation, differentiation, cell cycle, and apoptosis were analyzed by CCK-8 assay and flow cytometry. Furthermore, exosomes from MSC were extracted for further authentication.

RESULTS:

The transmission electron microscopy, nanoparticle tracking analysis, Western blotting, and flow cytometry methods all verify that ultrafiltration is a reliable method to extract exosomes in the culture medium. Exosomes from AML cell lines inhibit the proliferation of MDS cell lines, block cell cycle progression, and promote apoptosis and cell differentiation. It also leads to increased secretion of tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) in MDS cell lines. In addition, MSC-derived exosomes were found to inhibit the proliferation of MDS cell lines, arrest cell cycle progression, promote apoptosis, and inhibit differentiation.

CONCLUSION:

Ultrafiltration is a proper methodology in extracting exosomes. The exosomes of AML origin and MSC origin may play a role in MDS leukemia transformation via targeting TNF-α/ROS-Caspase3 pathway.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article