Your browser doesn't support javascript.
loading
Immobilization of Bacillus Thuringiensis and applicability in removal of sulfamethazine from soil.
Wen, Shengfang; Liu, Hunan; Yang, Rui; Wang, Lanjun; Zhu, Lusheng; Wang, Jun; Kim, Young Mo; Wang, Jinhua.
Afiliação
  • Wen S; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
  • Liu H; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
  • Yang R; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
  • Wang L; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
  • Zhu L; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
  • Wang J; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
  • Kim YM; Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea. Electronic address: youngmo@hanyang.ac.kr.
  • Wang J; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. Electronic address:
Environ Pollut ; 333: 122080, 2023 Sep 15.
Article em En | MEDLINE | ID: mdl-37390917
ABSTRACT
Microbial degradation is considered an essential and promising treatment for sulfadimidine contamination of soil. To address the low colonization rates and inefficiencies of typical antibiotic-degrading bacteria, sulfamethazine (SM2)-degrading strain H38 is converted into immobilized bacteria in this study. Results show that the removal rate of SM2 by immobilized strain H38 reaches 98% at 36 h, whereas the removal rate of SM2 by free bacteria reaches 75.2% at 60 h. In addition, the immobilized bacteria H38 exhibits tolerance to a wide range of pH (5-9) and temperature (20 °C-40 °C). As the amount of inoculation increases and the initial concentration of SM2 decreases, the removal rate of SM2 by the immobilized strain H38 increases gradually. Laboratory soil remediation tests show that the immobilized strain H38 can remove 90.0% of SM2 from the soil on the 12th day, which exceeds the removal by free bacteria by 23.9% in the same period. Additionally, the results show that the immobilized strain H38 enhances the overall activity of microorganisms in SM2-contaminated soil. Compared with the SM2 only (control group containing no bacteria) and free bacterial treatment groups, the gene expression levels of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, cbbLG, and cbbM increased significantly in the treatment group with immobilized strain H38. This study shows that immobilized strain H38 can reduce the effect of SM2 on soil ecology to a greater extent than free bacteria, while providing safe and effective remediation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Bacillus thuringiensis Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Bacillus thuringiensis Idioma: En Ano de publicação: 2023 Tipo de documento: Article